Publications
Main content start
Site content
- Experimental Discovery of a Fast and Stable Lithium Thioborate Solid Electrolyte, Li6+2x[B10S18]Sx (x ≈ 1). (2023, May 23). ACS Publications. https://doi.org/10.1021/acsenergylett.3c00560
- Salleo, A., & Giovannitti, A. (2021). Redox-Active Polymers Designed for the Circular Economy of Energy Storage Devices. ACS Energy Letters, 6(10), 3450–3457. https://doi.org/stanford.idm.oclc.org/10.1021/acsenergylett.1c01625
- Decarbonizing Heavy-Duty Transportation Workshop Brief. (2021). Stanford Energy.
- Comello, S., Glenk, G., & Reichelstein, S. (2021). Transitioning to clean energy transportation services: Life-cycle cost analysis for vehicle fleets. Applied Energy, 285. https://doi.org/10.1016/j.apenergy.2020.116408
- Cui, Y. (2021). Cathode-Electrolyte Interphase in Lithium Batteries Revealed by Cryogenic Electron Microscopy. Matter, 4(1), 302-312. https://doi.org/10.1016/j.matt.2020.10.021
- Onori, S. (2020). Stochastic capacity loss and remaining useful life models for lithium-ion batteries in plug-in hybrid electric vehicles. Journal of Power Sources, 478. https://doi.org/10.1016/j.jpowsour.2020.228991
- Cui, Y. (2020). Underpotential lithium plating on graphite anodes caused by temperature heterogeneity. Proceedings of the National Academy of Sciences, 117(47), 29453-29461. https://doi.org/10.1073/pnas.2009221117
- Onori, S. (2020). Characterization of Duty Cycles for the Peak Shaving Electric Grid Energy Storage Application. Proceedings of the ASME.
- Reichelstein, S., & Comello, S. (2020). Cost-Effcient Transition to Clean Energy Transportation Services. ZEW-Centre for European Economic Research, 285. https://doi.org/10.2139/ssrn.3716750
- Cui, Y. (2020). Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nature Energy, 5, 786–793. https://doi.org/10.1038/s41560-020-00702-8
- Onori, S. (2020). On-line Capacity Estimation for Lithium-ion Battery Cells via an Electrochemical Model-based Adaptive Interconnected Observer. IEEE Transactions on Control Systems Technology, 29(4), 1636-1651. https://doi.org/10.1109/TCST.2020.3017566
- Onori, S. (2020). Aging-Aware Optimal Energy Management Control for a Parallel Hybrid Vehicle Based on Electrochemical-Degradation Dynamics. https://doi.org/10.1109/TVT.2020.3019241
- Onori, S. (2020). Battery health prediction using fusion-based feature selection and machine learning. IEEE Transactions on Transportation Electrification, 7(2), 382-398. https://doi.org/10.1109/TTE.2020.3017090
- Azevedo, I. (2020). What are the best combinations of fuel-vehicle technologies to mitigate climate change and air pollution effects across the United States?. Environmental Research Letters, 15. https://doi.org/10.1088/1748-9326/ab8a85
- Cui, Y., & Bao, Z. (2020). Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nature Energy, 5, 526–533. https://doi.org/stanford.idm.oclc.org/10.1038/s41560-020-0634-5
- Chueh, W. (2020). Revisiting the t^0.5 Dependence of SEI Growth. Journal of The Electrochemical Society.
- Cui, Y. (2020). Tortuosity Effects in Lithium-Metal Host Anodes. Joule, 4(4), 938-952. https://doi.org/10.1016/j.joule.2020.03.008
- Onori, S. (2020). Machine Learning Based Optimal Energy Storage Devices Selection Assistance for Vehicle Propulsion Systems. SAE International. https://doi.org/stanford.idm.oclc.org/10.4271/2020-01-0748
- Cui, Y. (2020). Improving Lithium Metal Composite Anodes with Seeding and Pillaring Effects of Silicon Nanoparticles. ACS Nano, 14(4), 4601–4608. https://doi.org/stanford.idm.oclc.org/10.1021/acsnano.0c00184